

In-containing high durability alloy solder paste

SB6NX58-M500S Sn 3.5Ag 0.5Bi 6.0In 0.8Cu

Highly thermal stress resistant alloy with indium

Solid solution strengthening by In and Bi

Change of form at the solder joint after thermal cycling

●Component:6330 chip resistor ●T/C: -40 / +125°C, 2000 cycles

Plastic deformation occurred

Dislocation of Sn grain along the slip plane accumulates, and results in plastic

Sn grain matrix with the added elements

Improved compatibility with ENIG

Au from ENIG diffuses into the solder quickly. Then, Ni from electroless Ni-P layer diffuses and forms Sn-Ni IMC layer. Ni continues diffusing and thickening of Sn-Ni IMC layer. This causes a concentration of P and makes the joint interface brittle.

By adding Cu, quite compatible with Ni, SB6NX precipitates and forms $\mathsf{Cu}_6\mathsf{Sn}_5$ IMC at the interface with Ni-P. This acts as Ni barrier layer and effectively prevents the continual diffusion of Ni/thickening of Sn-Ni IMC laver / concentration of P. and realizes high joint reliability with ENIG finish.

For the better joint reliability

SB6NX & Sn/Ag/Bi/In vs. ENIG

SEM- EDX	SB6NX		Sn/Ag/Bi/In	
	Initial	-40/+125℃, 1000cycle	Initial	-40/+125℃, 1000cycle
SEM	Solder Ni-P layer Cu		10/07/8	Ni-P layer disappear
Cu		Cu forms a Ni barrier layer		
Ni		Prevents growth of Sn-Ni IMC layer		◆ Sn-Ni IMC layer grow
Р				P concentrates

Ni barrier layer effectively prevents growth of Sn-Ni IMC layer after

■ Shear strength after T/C at -40/+125°C

SB6NX ensures as high shear strength with ENIG as OSP substrate.

Alloy properties

Items		Init	SAC305	SB6NX
Liquidus °C		Č	219	206
Solidus		Č	217	202
Specific gravity	g/cm²		7.4	7.4
Tensile strength	MPa	25℃	34.5	62
Tensile strength		150℃	14	15
Elongation	%	25℃	41	26
Liongation		150℃	24	44

SB6NX has improved elongation property compared to SAC305. Better elongation property at 150°C contributes to preventing propagation of crack in T/C.

Product specifications

Product name	SB6NX58-M500SI		
Alloy composition (%)	Sn 3.5Ag 0.5Bi 6.0In 0.8Cu		
Melting point (°C)	202-206		
Particle size (μ m)	20-38		
Viscosity (Pa·s)	200		
Flux content (%)	11.0		
Halide content (%)	0		
Flux type	ROL0		

